Chemical Reactions Part \#1 Review

Average Atomic Mass

1. Rubidium is a soft, silvery-white metal that has two common isotopes, ${ }^{85} \mathrm{Rb}$ and ${ }^{87} \mathrm{Rb}$. If the abundance of ${ }^{85} \mathrm{Rb}$ is 72.2% and the abundance of ${ }^{87} \mathrm{Rb}$ is 27.8%, what is the average atomic mass of rubidium?
2. Uranium is used in nuclear reactors and is a rare element on earth. Uranium has three common isotopes. If the abundance of ${ }^{234} \mathrm{U}$ is 0.01%, the abundance of ${ }^{235} \mathrm{U}$ is 0.71%, and the abundance of ${ }^{238} \mathrm{U}$ is 99.28%, what is the average atomic mass of uranium?
3. Titanium has five common isotopes: ${ }^{46} \mathrm{Ti}(8.0 \%),{ }^{47} \mathrm{Ti}(7.8 \%),{ }^{48} \mathrm{Ti}(73.4 \%),{ }^{49} \mathrm{Ti}(5.5 \%),{ }^{50} \mathrm{Ti}$ (5.3\%). What is the average atomic mass of titanium?
4. Copper used in electric wires comes in two flavors (isotopes): ${ }^{63} \mathrm{Cu}$ and ${ }^{65} \mathrm{Cu} .{ }^{63} \mathrm{Cu}$ has an atomic mass of 62.9298 amu and an abundance of 69.09%. The other isotope, ${ }^{65} \mathrm{Cu}$, has an abundance of 30.91%. The average atomic mass between these two isotopes is 63.546 amu . Calculate the actual atomic mass of ${ }^{65} \mathrm{Cu}$.
5. Magnesium consists of three naturally occurring isotopes. The percent abundance of these isotopes is as follows: ${ }^{24} \mathrm{Mg}$ (78.70%), ${ }^{25} \mathrm{Mg}$ (10.13\%), and ${ }^{26} \mathrm{Mg}$ (11.7\%). The average atomic mass of the three isotopes is 24.3050 amu . If the atomic mass of ${ }^{25} \mathrm{Mg}$ is 24.98584 amu, and ${ }^{26} \mathrm{Mg}$ is 25.98259 amu , calculate the actual atomic mass of ${ }^{24} \mathrm{Mg}$.

Naming Compounds \& Molar Masses

6. Name each of the following chemical compounds and list their molar masses to the nearest $\mathrm{g} / \mathrm{mol}$:
(a) AgNO_{3} \qquad Mass = \qquad
(b) PbSO_{4} \qquad Mass = \qquad
(c) CoCl_{2} \qquad Mass = \qquad
(d) $\mathrm{Sn}\left(\mathrm{CO}_{3}\right)_{2}$ \qquad Mass = \qquad
7. Write the formulas of each of the following chemical compounds and list their molar masses to the nearest $\mathrm{g} / \mathrm{mol}$:
(a) copper (I) oxide \qquad Mass = \qquad
(b) ammonium phosphate \qquad Mass = \qquad
(c) vanadium (V) cyanide \qquad Mass = \qquad
(d) platinum (IV) hydroxide \qquad Mass = \qquad

Balancing Equations and Type of Reaction

8. Balance the following equations and indicate the type of reaction taking place:
(a) $\mathrm{NaBr}+$ \qquad $\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{Na}_{3} \mathrm{PO}_{4}+$ \qquad HBr

Type of reaction: \qquad
(b) \qquad $\mathrm{Ca}(\mathrm{OH})_{2}+$ \qquad $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \rightarrow \ldots \mathrm{CaSO}_{4}+$ \qquad $\mathrm{Al}(\mathrm{OH})_{3}$

Type of reaction: \qquad
(c) \qquad Mg + \qquad $\mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow \ldots \quad \mathrm{Fe}+$ \qquad MgO

Type of reaction: \qquad
(d) \qquad $\mathrm{C}_{2} \mathrm{H}_{4}+$ \qquad $\mathrm{O}_{2} \rightarrow \ldots \mathrm{CO}_{2}+$ \qquad $\mathrm{H}_{2} \mathrm{O}$

Type of reaction: \qquad
(e) \qquad $\mathrm{PbSO}_{4} \rightarrow ـ \mathrm{PbSO}_{3}+$ \qquad O_{2}

Type of reaction: \qquad
(f) \qquad $\mathrm{NH}_{3}+$ \qquad $\mathrm{I}_{2} \rightarrow$ \qquad $\mathrm{N}_{2} \mathrm{I}_{6}+$ \qquad H_{2}

Type of reaction: \qquad
(g) $\quad \mathrm{H}_{2} \mathrm{O}+\ldots \mathrm{SO}_{3} \rightarrow \ldots \mathrm{H}_{2} \mathrm{SO}_{4}$
\qquad
\qquad
Type of reaction: \qquad

Molar Conversions

9. How many grams does 0.500 moles of CuBr weigh?
10. How many molecules are there in 0.655 moles of $\mathrm{C}_{6} \mathrm{H}_{14}$?
11. How many moles are there in 2.35×10^{24} molecules of water?
12. How many grams does 5.60×10^{22} molecules of SiO_{2} weigh?
13. How many molecules are there in 21.6 grams of CH_{4} ?

Calculations Involving Moles and Gases

14. How many moles of gas does it take to occupy 120 L at a pressure of 2.3 atm and a temperature of 340 K ?
15. If I have a 50 L container that holds 45 moles of gas at a temperature of $200^{\circ} \mathrm{C}$, what is the pressure inside the container?
16. It is not safe to put aerosol canisters in a campfire, because the pressure inside the canisters gets very high and they can explode. If I have a 1.0 L canister that holds 2 moles of gas, and the campfire temperature is $1400^{\circ} \mathrm{C}$, what is the pressure inside the canister?
17. How many moles of gas are in a 30 L scuba canister if the temperature of the canister is 300 K and the pressure is 200 atm ?
18. I have a balloon that can hold 100 L of air. If I blow up this balloon with 3 moles of oxygen gas at a pressure of 1 atm , what is the temperature of the balloon?
