Chemical Reactions Part #1 Review

Average Atomic Mass

- 1. Rubidium is a soft, silvery-white metal that has two common isotopes, ⁸⁵Rb and ⁸⁷Rb. If the abundance of ⁸⁵Rb is 72.2% and the abundance of ⁸⁷Rb is 27.8%, what is the average atomic mass of rubidium?
- 2. Uranium is used in nuclear reactors and is a rare element on earth. Uranium has three common isotopes. If the abundance of ²³⁴U is 0.01%, the abundance of ²³⁵U is 0.71%, and the abundance of ²³⁸U is 99.28%, what is the average atomic mass of uranium?
- 3. Titanium has five common isotopes: ⁴⁶Ti (8.0%), ⁴⁷Ti (7.8%), ⁴⁸Ti (73.4%), ⁴⁹Ti (5.5%), ⁵⁰Ti (5.3%). What is the average atomic mass of titanium?
- 4. Copper used in electric wires comes in two flavors (isotopes): ⁶³Cu and ⁶⁵Cu. ⁶³Cu has an atomic mass of 62.9298 amu and an abundance of 69.09%. The other isotope, ⁶⁵Cu, has an abundance of 30.91%. The average atomic mass between these two isotopes is 63.546 amu. Calculate the actual atomic mass of ⁶⁵Cu.
- 5. Magnesium consists of three naturally occurring isotopes. The percent abundance of these isotopes is as follows: ²⁴Mg (78.70%), ²⁵Mg (10.13%), and ²⁶Mg (11.7%). The average atomic mass of the three isotopes is 24.3050 amu. If the atomic mass of ²⁵Mg is 24.98584 amu, and ²⁶Mg is 25.98259 amu, calculate the actual atomic mass of ²⁴Mg.

Naming Compounds & Molar Masses

- 6. Name each of the following chemical compounds and list their molar masses to the nearest g/mol:
 - (a) $AgNO_3$ ______ Mass = _____

 (b) $PbSO_4$ ______ Mass = ______

 (c) $CoCl_2$ ______ Mass = ______

 (d) $Sn(CO_3)_2$ ______ Mass = ______
- 7. Write the formulas of each of the following chemical compounds and list their molar masses to the nearest g/mol:
 - (a) copper (I) oxide _____ Mass = _____
 - (b) ammonium phosphate _____ Mass = _____

	(c)	vanadium (V) cyanide	Mass =
	(d)	platinum (IV) hydroxide	Mass =
Balancing Equations and Type of Reaction			
8.	Balance the following equations and indicate the type of reaction taking place:		
	(a)	a) $\underline{\qquad} NaBr + \underline{\qquad} H_3PO_4 \rightarrow \underline{\qquad} Na_3PO_4 + \underline{\qquad} HBr$	
			Type of reaction:
	(b) $\underline{\qquad} Ca(OH)_2 + \underline{\qquad} Al_2(SO_4)_3 \rightarrow \underline{\qquad} CaSO_4 + \underline{\qquad} Al(OH)_3$		_ CaSO ₄ + Al(OH) ₃
			Type of reaction:
	(c)	$\underline{\qquad} Mg + \underline{\qquad} Fe_2O_3 \rightarrow \underline{\qquad} Fe + \underline{\qquad}$	_ MgO
			Type of reaction:
	(d)	$\C_2H_4 + \O_2 \rightarrow \CO_2 + \$	H_2O
			Type of reaction:
	(e) PbSO ₄ \rightarrow PbSO ₃ + O ₂		
			Type of reaction:
	(f)	$_$ NH ₃ + $_$ I ₂ \rightarrow $_$ N ₂ I ₆ + $_$	_H ₂
			Type of reaction:
	(g)	$\underline{\qquad} H_2O + \underline{\qquad} SO_3 \rightarrow \underline{\qquad} H_2SO_4$	
			Type of reaction:

Molar Conversions

- 9. How many grams does 0.500 moles of CuBr weigh?
- 10. How many molecules are there in 0.655 moles of C_6H_{14} ?
- 11. How many moles are there in 2.35 x 10^{24} molecules of water?
- 12. How many grams does 5.60×10^{22} molecules of SiO₂ weigh?
- 13. How many molecules are there in 21.6 grams of CH_4 ?

Calculations Involving Moles and Gases

- 14. How many moles of gas does it take to occupy 120 L at a pressure of 2.3 atm and a temperature of 340 K?
- 15. If I have a 50 L container that holds 45 moles of gas at a temperature of 200 °C, what is the pressure inside the container?
- 16. It is not safe to put aerosol canisters in a campfire, because the pressure inside the canisters gets very high and they can explode. If I have a 1.0 L canister that holds 2 moles of gas, and the campfire temperature is 1400 °C, what is the pressure inside the canister?
- 17. How many moles of gas are in a 30 L scuba canister if the temperature of the canister is 300 K and the pressure is 200 atm?
- 18. I have a balloon that can hold 100 L of air. If I blow up this balloon with 3 moles of oxygen gas at a pressure of 1 atm, what is the temperature of the balloon?